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Abstract
We explore some explicit representations of a certain stable deformed
algebra of quantum mechanics, considered by R Vilela Mendes, having a
fundamental length scale. The relation of the irreducible representations of the
deformed algebra to those of the (limiting) Heisenberg algebra is discussed,
and we construct the generalized harmonic oscillator Hamiltonian in this
framework. To obtain local currents for this algebra, we extend the usual
nonrelativistic local current algebra of vector fields and the corresponding
group of diffeomorphisms, modelling the quantum configuration space as a
commutative spatial manifold with one additional dimension.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.40.Gh, 03.65.Ca, 11.10.Nx,
11.40.Dw, 11.40.Ex, 04.50.+h

1. Introduction

The possibility of experimentally observing features of quantum gravity at small length scales
has heightened interest in the study of space-time noncommutativity [1, 2]—e.g., through the
mathematics of noncommutative geometry [3], and/or as a feature of string theories [4–6].
The characteristic length scale � at which nonclassical features of gravity should emerge may
be the Planck length �P =

√
h̄G/c3 ∼ 1.6 × 10−35 m, or it may be significantly larger [7].

One way to introduce such noncommutativity is algebraic. A few years ago, Vilela Mendes
[8] argued again for consideration of the combined Heisenberg and Poincaré Lie algebras as
a kinematical algebra for relativistic quantum mechanics. This structure is ‘unstable’, but
allows a parameterized family of nontrivial deformations that are ‘stable’—in the sense that
all the Lie algebras in an open neighbourhood in the space of structure constants are mutually
isomorphic [9–12]. The nontrivial second cohomology of the original Lie algebra is a necessary
condition for it to be deformable [13]. The proposed stable algebra for relativistic quantum
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mechanics is a deformation by two parameters � and R, which are fundamental lengths. Taking
� → 0 and R → ∞ leads to recovery of the original Lie algebra. Vilela Mendes argues on
fundamental grounds for describing the physical world by means of a stable Lie algebra, so
that small changes in physical constants do not fundamentally alter the structure. We take no
position here on this question, but explore some interesting consequences of the Vilela Mendes
approach. A recent, beautiful paper of Chryssomalakos and Okon describes and discusses the
full set of possible stable deformations of the Heisenberg–Poincaré algebra, with explanation
of the relevant cohomology theory and detailed references [14].

The present paper is motivated by the problem of defining an equal-time, local current
algebra compatible with the nonrelativistic quantum kinematics that follows from Vilela
Mendes’ proposal. Like him we consider the case where R → ∞, but � �= 0; then
the space-time coordinate operators no longer commute. We clarify the relation of the
irreducible representations of a deformed subalgebra to those of the limiting Heisenberg
algebra, concentrating on the case of one space dimension (although our considerations
generalize straightforwardly to higher dimensions). The limit procedure here goes back
to a 1970 scheme of Barut and Bohm for reduction of certain representations of SO(4, 2) [15].
But our construction of the generalized kinetic energy and harmonic oscillator Hamiltonians
in this framework leads to an answer different from that suggested by Vilela Mendes.

One way of obtaining local currents for the deformed algebra is to extend the usual
nonrelativistic local current algebra (LCA) of scalar functions and vector fields, and the
corresponding infinite-dimensional groups of scalar functions and diffeomorphisms. In doing
this we make use of an abstract single-particle configuration space, which is a commutative
spatial manifold having one dimension more than the configuration space for the limiting
situation with � → 0. Thus, the deformed (1+1)-dimensional theory entails self-adjoint
representations of an infinite-dimensional Lie algebra of nonrelativistic, local currents for a
(2+1)-dimensional space-time (LCA2). To be able to recover the usual current algebra (LCA1)
in the limit � → 0, one may introduce a semidirect sum of LCA2 with the algebra of vector
fields of the line. The local operators then act in a direct integral of irreducible representations
of the global, finite-dimensional deformed Lie algebra. This seems to open interesting new
possibilities, which we discuss briefly.

The paper is organized as follows. In section 2, we present the necessary background—
the (�, R)-deformed Lie algebra of relativistic quantum mechanics, the nonrelativistic local
current algebra and its relation to the Heisenberg algebra, and the desirable properties for
local currents in relation to the deformed algebra with � �= 0. In section 3, we review several
different, but unitarily equivalent, self-adjoint representations of the �-deformed Heisenberg
algebra for the case of one spatial dimension—which is isomorphic to the Lie algebra of the
group of rigid motions of the plane. This subalgebra for the one-dimensional problem serves as
a useful laboratory. We write explicitly the unitary operators intertwining the representations.
This permits clarification of how an irreducible representation of the usual Heisenberg algebra
can be recovered in the � → 0 limit. In section 4, we discuss the kinetic energy and harmonic
oscillator Hamiltonians. In section 5, we consider first the problems associated with currents
localized with respect to the spectrum of the deformed position operator. Then we develop
and discuss the extended nonrelativistic local current algebra and diffeomorphism group.

2. Background

Introducing the 4-vectors qµ and pν , µ, ν = 0, 1, 2, 3, and the Lorentz generators Mµν , one
combines the canonical brackets
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[pµ, qν] = ih̄ηµνJ , [qµ, qν] = [pµ, pν] = [qµ,J ] = [pµ,J ] = 0, (1)

with the Lorentz brackets

[Mµν,Mρσ ] = i(Mµσηνρ + Mνρηµσ − Mνσηµρ − Mµρηνσ ), (2)

by means of the additional brackets

[Mµν, pλ] = i(pµηνλ − pνηµλ),

[Mµν, qλ] = i(qµηνλ − qνηµλ), (3)

[Mµν,J ] = 0,

where ηµν = diag[1,−1,−1,−1] in units with c = 1. To describe the quantum kinematics of
a particle, one typically represents a subalgebra of this Lie algebra by self-adjoint operators
in a Hilbert space.

While the Lie algebras of equations (1) and (2) are separately stable, the combined Lie
algebra of equations (1)–(3) is not, so we consider a stable deformation.

2.1. Deformed Lie algebras for quantum mechanics

The relevant deformation is labelled by fundamental lengths R and �, and satisfies brackets
where equations (2) and (3) are unchanged, but equations (1) are replaced by

[pµ, qν] = ih̄ηµνJ [qµ, qν] = −iε�2Mµν, [pµ, pν] = −i
ε′h̄2

R2
Mµν,

[qµ,J ] = iε
�2

h̄
pµ, [pµ,J ] = −i

ε′h̄
R2

qµ,

(4)

where ε and ε′ are ±1. Evidently as � → 0 and R → ∞, we recover equations (1)–(3).
This Lie algebra is isomorphic to the Lie algebra of the orthogonal group in six dimensions,

with metric ηab = diag[1,−1,−1,−1, ε′, ε]. Evidently, in a self-adjoint representation, qµ

no longer commute with each other. Their interpretation as space-time coordinate operators
in such a representation may be questioned [14], but if we maintain this interpretation,
Heisenberg-like uncertainty relations for these coordinates suggest that space-time becomes
‘fuzzy’ to order � [16].

We remark that in other specific models, the noncommutativity of the coordinate operators
is different. For example, in the case of a charged particle moving in a plane perpendicular to
a magnetic field of magnitude B, in the limit as the mass m → 0 we expect, for j, k = 1, 2,

[qj , qk] = iθjkJ , [qj ,J ] = 0, (5)

where θ is a constant antisymmetric matrix inversely proportional to B. A similar bracket
occurs for a bosonic string when there is a background, constant Neveu–Schwarz 2-form in
the world volume of a D-brane [17, 18].

As the parameter � is relevant locally, we shall follow Vilela Mendes in focusing on the
algebra obtained by taking R → ∞. Then the brackets involving R in equations (4) become
zero. We now want to concentrate on self-adjoint representations of the Heisenberg-like
subalgebra, with j, k = 1, 2, 3, and ε = −1, given by the spatial components of equations (2)
and (3), together with the brackets

[qj , qk] = i�2Mjk, [qj , pk] = iδjkh̄J ,

[qj ,J ] = −i
�2

h̄
pj , [pj , pk] = [pj ,J ] = 0.

(6)

The Lie algebra of equations (2), (3) and (6) represents the global symmetry of the deformed
quantum theory. We desire, however, to incorporate a description of local symmetry, for
which we turn to the local current algebra.
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2.2. Equal-time local current algebra

In standard, nonrelativistic quantum theory, the second-quantized field ψ̂(x, t) and its adjoint
ψ̂∗(x, t), for x ∈ R

d , are operator-valued distributions in the Fock space. These satisfy the
equal-time canonical commutation (−) or anticommutation (+) relations,

[ψ̂(x), ψ̂∗(y)]±(fixed t) = δ(x − y), (7)

the argument t is henceforth suppressed. Then the local, fixed-time mass density ρ(x) and
momentum density J (x) are operator-valued distributions, defined formally by

ρ(x) = mψ̂∗(x)ψ̂(x), J(x) = h̄

2i
{ψ̂∗(x)∇ψ̂(x) − [∇ψ̂∗(x)]ψ̂(x)}. (8)

These obey a certain singular Lie algebra, which is independent of whether the original field
is bosonic or fermionic [19]. Define

ρ(f ) =
∫

ρ(x)f (x) dx, J (g) =
∫ d∑

k=1

Jk(x)gk(x) dx, (9)

where f and the components gk of g are compactly-supported C∞ test functions on R
d . Then

one obtains the local current algebra [20]

[ρ(f1), ρ(f2)] = 0, [ρ(f ), J (g)] = ih̄ρ(g · ∇f ),

[J (g1), J (g2)] = −ih̄J ([g1, g2]),
(10)

where [g1, g2] = g1 · ∇g2 − g2 · ∇g1 is the usual Lie bracket of vector fields.
In the one-particle Hilbert space L2

dx(R
d), we have the self-adjoint representation

ρ(f )�(x) = mf (x)�(x), J (g)�(x) = h̄

2i
{g(x) · ∇�(x) + ∇ · [g(x)�(x)]}, (11)

where m is the particle mass. Now as the test function f (x) approaches an indicator function
χB(x) for a Borel set B ⊆ R

d , the expectation value (�, ρ(f )�) with respect to the single-
particle wavefunction � approximates m

∫
χB(x)|ψ(x)|2dx, which is the mass times the usual

probability for finding the particle in the region B. If f (x) approaches δ(x − x0) for a fixed point
x0 ∈ R

d , then (�, ρ(f )�) approaches m|�(x0)|2. We also see how the Heisenberg algebra
is recovered—iff (x) approximates the coordinate function xj , then ρ(f ) approximates the
moment operator mqj acting in L2

dx(R
d) via multiplication by mxj . Similarly, if g(x) is taken

to approximate a constant vector field in the j -direction, so that (let us say) gj (x) ∼ 1 with
gk(x) = 0 for k �= j , then J (g) ∼ −ih̄∂/∂xj , which is the action of the momentum operator
pj in L2

dx(R
d).

In short, the LCA in the one-particle representation, with suitable (global) choices of
test functions, allows recovery of the usual quantum-mechanical representation of the finite-
dimensional subalgebra of equations (1) having spatial indices. Likewise, generators of
spatial rotations may be recovered—e.g., in the one-particle representation in three space
dimensions, the operator for the orbital angular momentum about the x3-axis is approximated
by choosing g1(x) = −x2, g2(x) = x1, and g3(x) = 0 inside a large compact region
|x| � R; outside this region, g(x) falls smoothly to 0. Then J (g) approximates the operator
h̄M12 = L3 = (q × p) · e3 acting in L2

dx(R
3), where e3 is the unit vector in the x3-direction.

The study of inequivalent, self-adjoint representations of this infinite-dimensional algebra
has turned out to be a powerful method for classifying, and in some cases predicting,
kinematical possibilities for quantum systems. These possibilities include the usual N-particle
representations, N = 1, 2, 3, . . . , satisfying bosonic or fermionic statistics for N � 2 in
more than one space dimension. They also include particle systems obeying anyonic statistics
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in the two-dimensional space [21–25] or other exotic statistics, particles with spin [26, 27],
composite systems having dipole or higher multipole moments [28], and infinite particle or
extended systems having infinite-dimensional configuration spaces [29–31].

This is our motivation for investigating the possibilities for defining local currents
appropriate to the deformed Lie algebra of equations (6). The goal is to obtain an infinite-
dimensional, local Lie algebra that is a deformation or extension of the LCA of equations (10),
which, with suitable choices of test functions in a one-particle representation, allows recovery
of a standard representation of equations (6). Then the unitarily inequivalent representations of
the deformed LCA should describe kinematical possibilities for a nonrelativistic version of the
deformed quantum theory. Thus in section 3, we shall discuss some different ways of writing
standard representations of equations (10).

Note that we may introduce an operator-valued distribution Q(f, g) acting in L2
dx(R

d),
defined by

Q(f, g)� = f (x)� +
1

2i
{g(x) · ∇�(x) + ∇ · [g(x)�(x)]}. (12)

Then Q is a self-adjoint representation of the natural semidirect sum of the commutative
Lie algebra of compactly-supported, real-valued C∞ functions f on R

d , with the Lie algebra
of vector fields g on R

d ; namely,

[(f1, g1), (f2, g2)] = (g2 · ∇f1 − g1 · ∇f2,−[g1, g2]). (13)

The physical constants m and h̄ do not enter (12), but equations (11) follow from it when we
set ρ(f ) = mQ(f, 0) and J (g) = h̄Q(0, g).

The group that is associated with equation (13) is the natural semidirect product
D(Rd) × Diffc(Rd), where D(Rd) is the group of compactly supported, real-valued C∞

functions on R
d under pointwise addition, and Diffc(Rd) is the group of compactly supported

diffeomorphisms of R
d under composition [31]. These groups are endowed with the topology

of uniform convergence in all derivatives on compact sets. The group law, for f1, f2 ∈ D(Rd)

and φ1, φ2 ∈ Diffc(Rd), is

(f1, φ1)(f2, φ2) = (f1 + f2 ◦ φ1, φ2 ◦ φ1), (14)

where ◦ denotes composition.
Given the compactly-supported, C∞ vector field g on R

d , there exists a unique, one-
parameter group of C∞ diffeomorphisms φ

g
a(x), a ∈ R, such that

∂φ
g
a(x)

∂a
= g

(
φg

a(x)
)

(15)

with the initial condition φ
g
a=0(x) ≡ x. In a continuous, unitary representation U(f )V (φ) of

D(Rd)× Diffc(Rd), the local currents are the self-adjoint generators of one-parameter unitary
subgroups; so that

U(f ) = exp[(i/m)ρ(f )] = exp[iQ(f, 0)],

V
(
φg

s

) = exp[(is/h̄)J (g)] = exp[iQ(0, g)].
(16)

The method of induced representations, and other techniques of unitary group representation,
have been extensively used in the study of the local current algebra.

3. Some unitarily equivalent representations

Let us now turn to some representations of the spatial components of equations (2)–(3),
taken together with equations (6). In d space dimensions, there is a natural representation by
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derivations over the (commutative) manifold R
d+1, with global coordinates (x1, x2, . . . , xd, w).

Labelling this representation with the superscript (1), it is given by [8]

q
(1)
j = i�

(
w

∂

∂xj

− xj

∂

∂w

)
, M

(1)
jk = −i

(
xj

∂

∂xk

− xk

∂

∂xj

)
,

J (1) = −i�
∂

∂w
, p

(1)
j = −ih̄

∂

∂xj

.

(17)

The algebra is represented here by the generators of rigid motions of R
d+1, i.e. the (d + 1)-

dimensional Euclidean group Ed+1 which is a semidirect product of the translations and
rotation groups. Note that the coordinate w is like a hidden dimension in Kaluza–Klein
theory [32]; its presence here illustrates the idea that sometimes noncommutative structures
can serve as alternatives to hidden dimensions. The Hilbert space on which the differential
operators of equations (17) act as self-adjoint operators is the space H = L2

dx dw, consisting of
complex-valued functions � on R

d+1 that are square-integrable with respect to the Lebesgue
measure

(∏d
j=1 dxj

)
dw.

But the representation of equations (17) has the drawback that when we take the limit
as � → 0, we do not recover the usual representation of the Heisenberg algebra without
deformation; rather q

(1)
j and J (1) both tend formally to 0. We therefore consider an alternative,

denoted with the superscript (2), obtained by introducing a unitary multiplication operator U�

in the Hilbert space H. Defining U��(x, w) = exp[−iw/�]�(x, w), we set(
q

(2)
j ,M

(2)
jk ,J (2), p

(2)
j

) = U�

(
q

(1)
j ,M

(1)
jk ,J (1), p

(1)
j

)
U−1

� , (18)

then we have

q
(2)
j = xj + i�

(
w

∂

∂xj

− xj

∂

∂w

)
, M

(2)
jk = −i

(
xj

∂

∂xk

− xk

∂

∂xj

)
,

J (2) = I − i�
∂

∂w
, p

(2)
j = −ih̄

∂

∂xj

.

(19)

Now the operators smoothly go over to the standard Heisenberg representation as � → 0. This
representation is also given in [8].

Let us introduce two corresponding unitarily equivalent representations obtained by the
Fourier transformation. As usual, we have the unitary operator

F : H = L2
dx dw → Ĥ = L2

dkx dkw
,

given by

[F�](k1, . . . , kd, kw) = �̂(k1, . . . , kd, kw) =
(

1√
2π

)d+1 ∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxd dw

·�(x, w) exp[−ix · kx − ikww], (20)

where kx = (k1, . . . , kd) and kw are the Fourier conjugate variables to x and w, respectively.
Then setting (̂

q
(1)
j , M̂

(1)
jk , Ĵ (1), p̂

(1)0
j

) = F
(
q

(1)
j ,M

(1)
jk ,J (1), p

(1)
j

)
F−1,(̂

q
(2)
j , M̂

(2)
jk , Ĵ (2), p̂

(2)
j

) = F
(
q

(2)
i ,M

(2)
ij ,J (2), p

(2)
i

)
F−1,

(21)

we have

q̂
(1)
j = i�

(
kw

∂

∂kj

− kj

∂

∂kw

)
, M̂

(1)
jk = −i

(
kj

∂

∂kk

− kk

∂

∂kj

)
,

Ĵ (1) = �kw, p̂
(1)
j = h̄kj ,

(22)
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while

q̂
(2)
j = i

∂

∂kj

+ i�

(
kw

∂

∂kj

− kj

∂

∂kw

)
, M̂

(2)
jk = −i

(
kj

∂

∂kk

− kk

∂

∂kj

)
,

Ĵ (2) = I + �kw, p̂
(2)
j = h̄kj ,

(23)

so that in equations (23), as in equations (19), a representation of the Heisenberg algebra
survives in the � → 0 limit. Of course the spectra of the self-adjoint operators representing the
generators of the deformed algebra are the same across all unitarily equivalent representations.

We focus now for simplicity on the case d = 1, which illustrates well the issues discussed
in this paper. Because the effective spatial dimension for the local current algebra will be
d + 1, there is also the interesting possibility for d = 1 that features of anyonic statistics of
point particles in two-space could occur. We return to this point in the discussion below.

For d = 1, the algebra of equations (6) reduces to

[q, p] = ih̄J , [q,J ] = −i
�2

h̄
p, [p,J ] = 0. (24)

In the representation of equations (22), it is useful to introduce polar coordinates (ρ, ψ), with
kx = k1 = ρ sin ψ, kw = ρ cos ψ and dkx dkw = ρ dρ dψ . Then the operators become

q̂(1) = i�
∂

∂ψ
, p̂(1) = h̄ρ sin ψ, Ĵ (1) = �ρ cos ψ. (25)

The representation by equations (25) in Ĥ is obviously reducible, since the subspace of
momentum–space wavefunctions �̂ with support between ρ0 and ρ0 + �ρ is invariant under
these operators. Indeed, the Casimir operator

C = 1

h̄2 p2 +
1

�2
J 2 (26)

commutes with all of the generators in equations (24). The corresponding operator Ĉ defined
from equations (25) acts in Ĥ via multiplication by ρ2. The eigenvalues ρ2

0 of C label unitarily
inequivalent irreducible representations of (24), and we see that the reducible representation
given by equations (25) acting in Ĥ is actually a direct integral (from ρ0 = 0 to +∞) of
irreducible representations. The irreducible component associated with the eigenvalue ρ2

0
consists of operators acting on the Hilbert space Ĥρ0 of complex-valued functions �̂ρ0(ψ) on
the circle of radius ρ0 centred at the origin in (kx, kw)-space that are square-integrable with
respect to the measure dψ .

Let us denote by q̂(1)
ρ0

the self-adjoint operator i�∂/∂ψ acting in Ĥρ0 (defined on a domain of
essential self-adjointness that includes everywhere essentially continuous and differentiable
functions). Let p̂(1)

ρ0
and Ĵ (1)

ρ0
be, respectively, the multiplication operators h̄ρ0 sin ψ and

�ρ0 cos ψ acting in Ĥρ0 . Then a complete orthogonal basis for Ĥρ0 is provided by the
eigenfunctions of q̂(1)

ρ0
, specifically

{
�̂(n)

ρ0
(ψ) = e−inψ : n ∈ Z

}
, which may be regarded

as infinitely differentiable functions on the circle of radius ρ = ρ0. Thus q̂(1)
ρ0

has the
eigenvalue spectrum {n� : n ∈ Z}, and the positional spectrum (which is invariant under
unitary equivalence) is discrete and unbounded in an irreducible self-adjoint representation
of the deformed algebra. On the other hand, the spectra of p̂(1)

ρ0
and Ĵ (1)

ρ0
are continuous and

bounded in absolute value by h̄ρ0, and �ρ0, respectively, in such an irreducible representation.
Note that the complex-valued functions on the plane given by �̂(n)(ρ, ψ) = e−inψ, n ∈ Z,

do not belong to Ĥ as they are not square-integrable with respect to ρ dρ dψ . These are
‘non-normalizable’ eigenfunctions of the operator q̂(1) of equation (25). Bona fide square-
integrable eigenfunctions of q̂(1) in Ĥ take the form f (ρ) e−inψ , where

∫ |f (ρ)|2ρ dρ is finite.
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One regards the operator q̂(1) as the direct integral over ρ of the measurable field of operators
q̂(1)

ρ and the corresponding direct integral structure of the Hilbert space is given by

Ĥ =
∫ ∞

0
Ĥρρ dρ. (27)

Now, in the representations of equations (24) given by equations (17) or (19) acting in H, we
have corresponding decompositions into direct integrals of irreducible representations over the
parameter ρ [33]. The irreducible representations act in Hilbert spaces Hρ , and the operator
q(1) (respectively, q(2)) is the direct integral over ρ of operators q(1)

ρ (respectively, q(2)
ρ ) that

act in Hρ . Let us introduce polar coordinates (r, θ), with x = r sin θ and w = r cos θ .
Then the corresponding eigenfunctions of the operator q(1)

ρ0
, with eigenvalues n�, in an

irreducible representation labelled by ρ0, are the functions
{
�(n)

ρ0
(r, θ) = einθ : n ∈ Z

}
.

The corresponding eigenfunctions of the operator q(2)
ρ0

are {einθ e−i(r/�) cos θ : n ∈ Z}. The
associated decomposition of H as a direct integral of Hρ with respect to ρ dρ, is developed
in [33] using the Fourier–Bessel transformation. For any element �(x,w) of H, we have
�(r sin θ, r cos θ) =

∫ ∞
0 �ρ(r sin θ, r cos θ)ρ dρ, where

�ρ(r sin θ, r cos θ) = (2π)−1
∫ 2π

0
dθ ′

∫ ∞

0
r ′ dr ′�(r ′ sin θ ′, r ′ cos θ ′)

× J0
[
ρ
√

r2 + (r ′)2 − 2rr ′ cos(θ − θ ′)
]
. (28)

Finally, we can explore the rather subtle way that the usual, irreducible representation of
the Heisenberg algebra must be recovered from irreducible representations of the deformed
algebra (24), in the limit � → 0, a point that was not addressed by Vilela Mendes. With
[F�](kx, kw) = �̂(kx, kw), it is easy to show that [F(U��)](kx, kw) = �̂(kx, kw + 1/�).
Thus, considering the representation in Ĥ obtained from equations (23) (with d = 1), the
irreducible components contributing to the direct integral are defined from wavefunctions
having support on circles centred at the point kx = 0, kw = −1/� in (kx, kw)-space, i.e.

k2
x +

(
kw +

1

�

)2

= ρ2
0 . (29)

To obtain the usual representation of the Heisenberg algebra as � → 0, we must arrive at
wavefunctions in the limiting representation that become independent of kw. However, from
equation (29), we see that if we try to let � → 0 while ρ0 is held fixed, we obtain no such limit,
rather, |kw| becomes arbitrarily large while the operator p(2) (which acts through multiplication
by h̄kx) remains bounded. The way out of this difficulty is to allow ρ0 to depend on �. Taking
ρ0 = 1/� in (29), we have for a very small � a circle of very large radius tangent to the
horizontal axis at the origin, approximating the line kw = 0, indeed,

kw = −1

�
+

1

�

(
1 − k2

x�
2
) 1

2 , (30)

so that for any fixed value of kx, kw ≈ −(1/2)k2
x� → 0 in the limit as � → 0. Thus, traversing

a parameterized family of irreducible representations labelled by ρ0 = 1/� (or at least, having
the property that ρ0 tends toward 1/� as � → 0) is the appropriate way to obtain the Heisenberg
algebra in the limiting irreducible representation.

Moreover, the condition ρ0 = 1/� allows the operator p(2) (whose spectrum is bounded
by h̄ρ0) to become unbounded as desired when � → 0.
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4. The kinetic energy and harmonic oscillator Hamiltonians

To investigate in detail the quantum-mechanical behaviour of a particle system described by
the deformed algebra, such as the harmonic oscillator with a fundamental length scale, we
need to settle on the form of the kinetic energy part of the Hamiltonian H0, and write the total
Hamiltonian H = H0 + V . In [8], it was suggested that for a particle of mass m, we should
use H0 = p2/2m, where p is the generator appearing in the algebra of equations (24), and that
the oscillator Hamiltonian should then be Hosc = p2/2m + mω2q2/2.

But one reasonable criterion for determining the choice of H0 is the physical condition
that the time-derivative of the particle position should be the particle velocity. That is, we
should expect H0 and Hosc to satisfy

q̇ = 1

ih̄
[q,H0] = 1

ih̄
[q,Hosc] = p

m
. (31)

However, we have from equations (24) that

1

ih̄

[
q,

p2

2m

]
= 1

2m
(pJ + Jp), (32)

which becomes p/m when J is the identity operator, but not otherwise. To fulfill
equation (31), we propose to modify the form of the kinetic energy term in the Hamiltonian,
so that

H0 = 1

2m

{
p2 +

h̄2

�2
(J − I )2

}
, (33)

where I is the identity operator in a representation of the algebra. Note that the coefficient
h̄2/�2 in (33) is needed to obtain the correct commutation relation with q.

Now, in the representation q(2), p(2),J (2) of the deformed algebra given by
equations (19), with d = 1, we have

H
(2)
0 = − h̄2

2m

{
∂2

∂x2
+

∂2

∂w2

}
, (34)

while in the Fourier-transformed representation q̂(2), p̂(2), Ĵ (2), we have

Ĥ
(2)
0 = h̄2

2m

(
k2
x + k2

w

)
. (35)

The explicit dependence of H0 on � has disappeared.
Nevertheless, this is the family of irreducible representations that goes over smoothly

to the standard representations of the Heisenberg algebra as we take the limit � → 0, with
ρ0 = 1/�. Returning to the discussion following equation (30), we have from equation (35),

Ĥ
(2)
0 ≈ (h̄2/2m)

[
k2
x + (�2/4)k4

x

]
, (36)

so that Ĥ
(2)
0 → (h̄2/2m)k2

x as � → 0.
Now the oscillator potential, and other potentials of the form V (q), commute with q, so

that [q,H0 + V ] = [q,H0], and it is appropriate to take the harmonic oscillator Hamiltonian
for the deformed quantum mechanics to be Hosc = H0 +mω2q2/2, with H0 as in equation (33).
From (19), however, we see that the potential energy term no longer acts via multiplication in
L2

dx dw, but as a differential operator via further derivative terms.
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5. Discretized and extended local current algebras

In this section we explore two approaches to the introduction of local currents.
In the first approach, we interpret locality with respect to a basis of eigenvectors of q in an

irreducible representation of the deformed Heisenberg algebra (24). This leads to discretized
mass and momentum density operators, i.e. a theory on a lattice.

In the second approach, we interpret ‘locality’ with respect to the (xw)-space on which
representations of (24) are modelled. Here we consider two possibilities. The first is to work
straightforwardly with the nonrelativistic current algebra in two-dimensional space (LCA2) to
describe the one-dimensional, deformed quantum kinematics, while the second is to introduce
a semidirect sum of LCA2 with the algebra of vector fields on the line. In the discussion, we
note the tension occurring between locality and irreducibility.

5.1. Locality with respect to the discrete positional spectrum

In an irreducible representation of equations (25), the spectrum of the self-adjoint operator
representing the generator q is discrete, given by n� for n ∈ Z; write the corresponding
eigenvector as |n�〉. We shall then write q|n�〉 = n�|n�〉, and

q =
∞∑

n=−∞
n�|n�〉〈n�|, I =

∞∑
n=−∞

|n�〉〈n�|. (37)

The corresponding local mass density operator Jq takes the form

Jq(g) = m

∞∑
n=−∞

g(n�)|n�〉〈n�|, (38)

where by analogy with the continuum case, the real-valued function g has compact support,
i.e. for some N > 0, g(n�) = 0 whenever |n�| > N�. When g(n�) approximates the function
n�, Jq(g) approximates the moment operator mq. When g(n�) � 0 (∀n ∈ Z), Jq(g) is a
positive operator. When g(n�) approximates the constant function 1, Jq(g) approximates the
mass times the identity operator. As we are in a representation of the local currents describing a
single particle, we can interpret (1/m)Jq(g) as a spatial probability density operator averaged
with g(n�).

Equation (25) implies

〈n�|p|m�〉 = h̄ρ0

2i
(δn+1,m − δn−1,m) (39)

and

〈n�|J |m�〉 = �ρ0

2
(δn+1,m + δn−1,m). (40)

Introduce the local currents

Jp(h) = 1

2

∞∑
n=−∞

h̃(n�){p|n�〉〈n�| + |n�〉〈n�|p} (41)

and

JJ (r) = 1

2

∞∑
n=−∞

r̃(n�){J |n�〉〈n�| + |n�〉〈n�|J }, (42)

where h(n�) ≡ (1/2)[̃h(n�)+h̃((n+1)�)] and r(n�) ≡ (1/2)[̃r(n�)+r̃((n+1)�)] are also taken
to be compactly supported. As h̃(n�) and r̃(n�) approximate the function that is identically 1,
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so do h(n�) and r(n�), then Jp(h) approximates p, JJ (r) approximates J , and the global
algebra is recovered.

From equations (39)–(42), we find

Jp(h) = h̄ρ0

2i

∞∑
n=−∞

h(n�){|n�〉〈(n + 1)�| − |(n + 1)�〉〈n�|}, (43)

JJ (r) = �ρ0

2

∞∑
n=−∞

r(n�){|n�〉〈(n + 1)�| + |(n + 1)�〉〈n�|}. (44)

For the Lie algebra of currents generated by these operators, in the irreducible representation
labelled by ρ0, to be local, we need the commutator brackets of the operators Jq(g), Jp(h)

and JJ (r) given by equations (38), (43) and (44) to yield similarly local expressions. These
expressions are all linear combinations of operators of the form |n�〉〈n�|, |n�〉〈(n + 1)�| and
|(n + 1)�〉〈n�|.

In fact, we have

[Jq(g1), Jq(g2)] = 0, (45)

[Jq(g), Jp(h)] = −i
mh̄

�
JJ (r), (46)

where r(n�) = h(n�){g(n�) − g([n + 1]�)}, and

[Jq(g), JJ (r)] = i
m�

h̄
Jp(h), (47)

where h(n�) = r(n�)(g(n�) − g([n + 1]�)), which thus far are satisfactorily local. But other
commutators, such as [Jp(h), JJ (r)], generate terms of the form |(n + 1)�〉〈(n − 1)�| and
|(n − 1)�〉〈(n + 1)�|, so that successive commutators generate additional terms |(n − m)�〉
〈(n+m)�| and |(n+m)�〉〈(n−m)�|, for arbitrary m ∈ Z. Therefore, to close the Lie algebra of
these currents, one is forced to include new basis elements in the (already infinite-dimensional)
current algebra, having more general forms, e.g.

∞∑
n,m=−∞

s(n�,m�){|(n + m)�〉〈(n − m)�| ± |(n − m)�〉〈(n + m)�|},

where s is a compactly supported function on the square lattice of points (n�,m�). Such
currents are nonlocal in the positional eigenvalues, since (n − m)� and (n + m)� become
arbitrarily far apart. This sort of behaviour by the commutation relations of discretized local
derivatives is well known in the context of lattice models.

Before leaving the discussion of the discretized current algebra, it is worth remarking that
we do have within this framework an equation of continuity for the deformed quantum theory,
relating the time derivative of Jq to the spatial divergence of Jp. Taking the Hamiltonian H to
be H0 + V (q), with H0 given by equation (33), we have

J̇q(g) = 1

ih̄
[Jq(g),H ] = m

ih̄

[ ∞∑
n=−∞

g(n�)|n�〉〈n�|,H
]

= m

ih̄

[ ∞∑
n=−∞

g(n�)|n�〉〈n�|,H0

]
. (48)
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Straightforward calculations yield[∑
n

g(n�)|n�〉〈n�|, p2

]
=

(
h̄ρ0

2i

)2 ∑
n

g(n�){−|(n + 2)�〉〈n�| + |n�〉〈(n + 2)�|}

+

(
h̄ρ0

2i

)2 ∑
n

g(n�){−|(n − 2)�〉〈n�| + |n�〉〈(n − 2)�|}

=
(

h̄ρ0

2i

)2 ∑
n

(g((n − 2)�) − g(n�))

· {|(n − 2)�〉〈n�| − |n�〉〈(n − 2)�|}, (49)

while[∑
n

g(n�)|n�〉〈n�|, (J − I )2

]
= −�2ρ2

0

4

∑
n

g(n�){|(n − 2)�〉〈n�| − |n�〉〈(n − 2)�|}

− �2ρ2
0

4

∑
n

g(n�){|(n + 2)�〉〈n�| − |n�〉〈(n + 2)�|}

+ �ρ0

∑
n

g(n�) · {|(n − 1)�〉〈n�| − |n�〉〈(n − 1)�|}

+ �ρ0

∑
n

g(n�) · {|(n + 1)�〉〈n�| − |n�〉〈(n + 1)�|}

= −�2ρ2
0

4

∑
n

(g(n�) − g((n − 2)�))

· {−|n�〉〈(n − 2)�| + |(n − 2)�〉〈n�|}
+ �ρ0

∑
n

(g(n�) − g((n − 1)�))

· {−|n�〉〈(n − 1)�| + |(n − 1)�〉〈n�|}.
Then from equation (48), with H0 as in equation (33), we obtain (after replacing the index n
by n + 1 in the infinite sum)

J̇q(g) = h̄ρ0

2i

∑
n

(g((n + 1)�) − g(n�))

�
· {−|(n + 1)�〉〈n�| + |n�〉〈(n + 1)�|} = Jp(Dg),

(50)

where

Dg(n�) ≡ g((n + 1)�) − g(n�)

�
(51)

is the discretized derivative. Evidently, equation (50) is precisely the required continuity
equation. The density Jq and current Jp that appear in this equation of continuity are local,
but they belong to a Lie algebra that necessarily includes currents that are nonlocal with respect
to the positional operator q.

5.2. Locality with respect to the extended spatial manifold

Consider again the global Lie algebra given by equations (24). A quite different approach to
introducing local currents is suggested by the form of the representation of this Lie algebra by
equations (19) with d = 1. The idea is to define a current algebra that is local in (x,w)-space,
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from which—with the right choices of limiting test functions—we shall be able to recover
equations (19).

Thus, let us refer back to the LCA of equations (12), and interpret these equations as
applying in a two-dimensional Euclidean space with coordinates (x,w), extending the spatial
manifold by one dimension. We then have the operator-valued distribution Q(h, gx, gw)

acting in L2
dx dw, where h is drawn from the space of compactly-supported, real-valued C∞

test functions on (x,w)-space, and gx, gw are the components of a compactly-supported, C∞

vector field on (x,w)-space

Q(h, gx, gw) = h(x,w) +
1

2i

{
gx(x,w)

∂

∂x
+

∂

∂x
gx(x,w)

}
+

1

2i

{
gw(x,w)

∂

∂w
+

∂

∂w
gw(x,w)

}
. (52)

Defining Q�(h, gx, gw) = Q(h, �gx, �gw) for � > 0, we obtain a family of operators
parameterized by �. In the � → 0 limit, Q�(h, gx, gw) reduces to Q(h, 0, 0). Then with

ρ(f ) = lim
h→f

mQ(h, 0, 0), (53)

we recover the earlier one-particle mass density operator in one space dimension. The limit
here pertains to the fact that f depends only on x and is independent of w, while h is compactly
supported in (x,w)-space.

The local current Q�(h, gx, gw) is clearly motivated by the form of q(2) in equation (19);
in fact, in the limit where h(x,w) approaches the coordinate function x, and the vector field
(gx(x,w), gw(x,w)) approaches (−w, x), we recover q(2) with the space dimension d = 1.
Evidently, Q (or, alternatively, Q�) is also sufficiently general to let us obtain the other global
operators in the deformed current algebra, when suitable limits of h, gx and gw are taken. Thus
the operator p(2) (with d = 1) is just Q(0, h̄gx, 0) or Q�(0, (h̄/�)gx, 0), taken in the limit
where gx approaches the constant vector field of magnitude 1. Likewise J (2) is Q(h, 0, �gw)

or Q�(h, 0, gw), taken in the limit where both h and gw become identically 1.
The natural choices of local currents corresponding to p(2) and J (2) are, respectively,

J (g) = h̄

2i

{
g(x)

∂

∂x
+

∂

∂x
g(x)

}
(54)

and

J (k) = k(w) +
�

2i

{
k(w)

∂

∂w
+

∂

∂w
k(w)

}
, (55)

where g(x) and k(w) are compactly-supported C∞ functions on R. These local currents
incorporate the intuitive idea of local flows in the two coordinate directions. To express them
in terms of Q or Q�, we write (again recalling that the arguments of Q are compactly supported
in both the x and w coordinates)

J (g) = lim
gx→g

Q(0, h̄gx, 0) = lim
gx→g

Q�

(
0,

h̄

�
gx, 0

)
(56)

and

J (k) = lim
h→k

lim
gw→k

Q(h, 0, �gw) = lim
h→k

lim
gw→k

Q�(h, 0, gw). (57)

Because of the way the operator q(2) mixes the x and w directions, it is necessary to incorporate
the full (x,w)-dependence in the test functions h, gx and gw that appear as arguments of Q.
Then the current algebra that accommodates all the natural local and global limits is just LCA2,
i.e. the algebra of Q(h, gx, gw) satisfying the semidirect sum Lie algebra of equation (13) with
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d = 2. So we have the usual local current algebra of nonrelativistic quantum mechanics, but
localized in two space dimensions rather than just one.

An interesting feature of this framework is that the decomposition of L2
dxdw(R2) into a

direct integral of irreducible representations of the global algebra (labelled, as in section 3,
by ρ0), is not respected by the one-particle irreducible representation of the LCA. That is, the
local currents unavoidably connect the reducing subspaces of the global algebra. We have a
kind of tension between our desire to incorporate local currents, and the assumption that we
can work with a single, irreducible representation of the global, deformed algebra.

This situation does not occur for the usual Heisenberg algebra, where the Hilbert space
for a single irreducible representation labelled by h̄ also carries the one-particle representation
of the full LCA. However, it is reminiscent of earlier results pertaining to self-adjoint
representations of the LCA describing spinning particles in three space dimensions. Here
irreducible representations of the global algebra describe quantum particles with fixed spin—
i.e., the operators act within a single irreducible representation of SU(2)—while the local
currents inevitably contain spin-changing terms, that connect representations associated with
a tower of different spins [27].

Let us take another look at how we can recover LCA1 as the � → 0 limit of LCA2 in the
single-particle representation written above. If we take the operators Q� as our starting point,
with fixed test functions (h, gx, gw) independent of �, then as � → 0 and h → f , we recover
only the density operator ρ(f ), not the full LCA1. To recover the local currents J (g) in the
� → 0 limit, we must allow at least some of the test functions themselves to be �-dependent,
as in equation (56). But the form of J (g) in equation (54) is actually independent of �. This
suggests that, for a given �, we consider an extension of the current algebra LCA2 (generated
by the Q�(h, gx, gw)) by the algebra of vector fields on the line (generated by the J (g) in
equation (54)), via the bracket

[Q�(h, gx, gw), J (g)] = ih̄Q�(̃h, g̃x, g̃w), (58)

where

h̃(x,w) = g(x)
∂

∂x
h(x,w),

g̃x(x,w) = g(x)
∂

∂x
gx(x,w) − gx(x,w)

∂

∂x
g(x),

g̃w(x,w) = g(x)
∂

∂x
gw(x,w).

(59)

Note in equations (58) and (59) that h, h̃ are compactly-supported, C∞ functions on (x,w)-
space, (gx, gw) and (g̃x, g̃w) are compactly-supported, C∞ vector fields on (x,w)-space, while
g is a compactly-supported, C∞ vector field in the x-coordinate only.

Now in the limit � → 0,Q�(h, gx, gw) becomes multiplication by h(x,w), while J (g)

survives as the operator for total momentum density in the x-direction, independent of (or
integrated over) w. The representation is still reducible; w has become a kind of unobservable,
internal coordinate for a particle theory in one space dimension. This construction also
generalizes to higher space dimensions, augmented by the one additional coordinate w. Note,
however, that the form of the kinetic energy term in the Hamiltonian, given by H

(2)
0 in

equation (34), is independent of �; the second derivative with respect to w does not vanish as
� → 0. Upon taking this limit, we can use the fact that the operators ρ(f ) and J (g) commute
with ∂2/∂w2 to recover the continuity equation in the continuum

ρ̇(f ) = 1

ih̄
[ρ(f ),H0] = J

(
df

dx

)
, (60)

and the ordinary quantum mechanics of a free particle having x as its positional coordinate.
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For local currents as defined by equation (52) in (x,w)-space, we can also write an
equation of continuity for a free particle,

mQ̇(h, 0, 0) = m

ih̄
[Q(h, 0, 0),H0] = h̄Q

(
0,

∂h

∂x
,

∂h

∂w

)
. (61)

But note that Q(h, 0, 0) is no longer a positional mass density. If the potential energy V is
a function of the (deformed) position operator q (as in the case of the deformed harmonic
oscillator), then V (q) does not commute with mQ̇(h, 0, 0) and we have no such continuity
equation.

6. Concluding remarks

In the case of one space dimension, we have described two approaches to introducing fixed-
time local currents for a subalgebra of the deformed Poincaré–Heisenberg algebra discussed
by Vilela Mendes. The first requires a nonlocal Lie algebra generated by discretized local
currents, but the currents act within an irreducible representation of the global algebra. The
second requires adjoining an extra dimension to the spatial manifold, and the local currents
connect the reducing subspaces in a direct integral of irreducible representations of the global
algebra.

From our perspective, the latter approach offers some attractive possibilities. We have
mentioned above the existence of many interesting, inequivalent representations of LCA2,
including representations describing N particles satisfying the statistics of anyons. This
suggests a possible new interpretation of such representations—not as describing conventional
particles in two-space, but as describing local currents for a deformed algebra of quantum
mechanics having some anyonic properties. Such an interpretation is a topic of continuing
investigation by the authors.
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